SINGLE-CHANNEL HIGH-SPEED MOSFET DRIVER

■ DESCRIPTION

The UTC US2829 is a single-channel high-speed MOS-FET driver. The device is fabricated by use of BICMOS outputs to achieve high switching speed. The outputs are capable of delivering peak currents up to 2A into capacitive loads.

■ FEATURES

* Low-cost single-channel high-speed MOSFET driver
* 2A peak output current
* 25ns max rise/fall times and 40ns max propagation delay, 1nF load
* Low power dissipation: ICC=15μA(Max) @ Ta=25°C
* Broad VCC operating range: 4V to 14V

■ ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Free</td>
<td>Halogen Free</td>
<td></td>
</tr>
<tr>
<td>US2829L-AF5-R</td>
<td>US2829G-AF5-R</td>
<td>SOT-25</td>
</tr>
</tbody>
</table>

US2829L-AF5-R

(1) Packing Type
(2) Package Type
(3) Lead Free

(1) R: Tape Reel
(2) AF5: SOT-25
(3) H: Halogen Free, L: Lead Free

■ MARKING

US2829

1 2 3 4 5

L: Lead Free
G: Halogen Free
PIN CONFIGURATION

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>PIN NAME</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Connection</td>
</tr>
<tr>
<td>3</td>
<td>IN</td>
<td>Driver input</td>
</tr>
<tr>
<td>4</td>
<td>OUT</td>
<td>Driver output, OUT = IN</td>
</tr>
<tr>
<td>5</td>
<td>Vcc</td>
<td>Driver supply voltage/regulator output voltage</td>
</tr>
</tbody>
</table>

FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUT(IN)</th>
<th>OUTPUT(OUT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

H: High Level
L: Low Level

LOGIC DIAGRAM

![Logic Diagram](attachment:logic_diagram.png)
ABSOLUTE MAXIMUM RATING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{CC})</td>
<td>-0.3 ~ +15 V</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>-0.3 ~ (V_{CC}) +0.5 V</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{OUT})</td>
<td>-0.5 ~ (V_{CC}) +0.5 V</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Output Current</td>
<td>(I_{OUT})</td>
<td>±100 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_D)</td>
<td>437 mW</td>
<td>mW</td>
</tr>
<tr>
<td>Derated Above 25°C</td>
<td></td>
<td>3.5 mW/°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_{OPR})</td>
<td>-40 ~ +125 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{STG})</td>
<td>-65 ~ +150 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{CC})</td>
<td>4</td>
<td>14</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>-0.3</td>
<td>(V_{CC})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_{OPR})</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (\(Ta=25°C \), unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Level Output Voltage</td>
<td>(V_{OH})</td>
<td>(V_{CC}=10\text{V}, I_{OH}=-1\text{mA})</td>
<td>9.75</td>
<td>9.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=10\text{V}, I_{OH}=-100\text{mA})</td>
<td>8</td>
<td>9.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low-Level Output Voltage</td>
<td>(V_{OL})</td>
<td>(V_{CC}=10\text{V}, I_{OL}=1\text{mA})</td>
<td>0.18</td>
<td>0.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=10\text{V}, I_{OL}=100\text{mA})</td>
<td>1</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Positive-going input threshold voltage</td>
<td>(V_{T+})</td>
<td>(V_{CC}=5\text{V})</td>
<td>3.3</td>
<td>4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=10\text{V})</td>
<td>6.6</td>
<td>7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=14\text{V})</td>
<td>9.3</td>
<td>10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Negative-going input threshold voltage</td>
<td>(V_{T-})</td>
<td>(V_{CC}=5\text{V})</td>
<td>1</td>
<td>1.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=10\text{V})</td>
<td>2</td>
<td>3.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=14\text{V})</td>
<td>2.5</td>
<td>4.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input voltage hysteresis</td>
<td>(V_{T+}-V_{T-})</td>
<td></td>
<td>1.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>(I_{(LEAK)})</td>
<td>(V_{CC}=10\text{V}, V_{IN}=0 \text{ or } V_{CC})</td>
<td>0.2</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_{CC})</td>
<td>(V_{CC}=10\text{V}, V_{IN}=V_{CC} \text{ or } \text{GND}, I_{OUT}=0)</td>
<td>0.1</td>
<td>15</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{IN})</td>
<td>(V_{CC}=10\text{V})</td>
<td>5</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS (see TEST CIRCUIT AND WAVEFORMS)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation delay from input (IN) to output(OUT)</td>
<td>(t_{PLH})</td>
<td>(V_{CC}=14\text{V}, C_{L}=1\text{nF})</td>
<td>40</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t_{PHL})</td>
<td>(V_{CC}=10\text{V}, C_{L}=1\text{nF})</td>
<td>24</td>
<td>45</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=5\text{V}, C_{L}=1\text{nF})</td>
<td>25</td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output transition time</td>
<td>(t_{tr})</td>
<td>(V_{CC}=14\text{V}, C_{L}=1\text{nF})</td>
<td>14</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=10\text{V}, C_{L}=1\text{nF})</td>
<td>14</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}=5\text{V}, C_{L}=1\text{nF})</td>
<td>14</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
TEST CIRCUIT AND WAVEFORMS

![Test Circuit Diagram]

From Output

$CL = 1nF$

IN

50%

tr % 10ns

tf % 6ns

VCC

0V

OUT

50% 90% 10%

VOL

VOH

TEST CIRCUIT

PROPAGATION DELAY TIMES

Note: C_L includes probe and jig capacitance.

All input pulses are supplied by generators having the following characteristics: $P_{RR} \leq 1MHz$, $Z_0 = 50\Omega$, $t_R \leq 6ns$, $t_F \leq 6ns$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.